A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy Ii: Convexity and Concavity

نویسندگان

  • Eric A. Carlen
  • Elliott H. Lieb
چکیده

We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is Φp,q(A1, A2, . . . , Am) = (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy

and prove that it is jointly concave for 0 < p ≤ 1 and convex for p = 2. We then derive from this a Minkowski type inequality for operators on a tensor product of three Hilbert spaces, and show how this implies the strong subadditivity of quantum mechanical entropy. For p > 2, Φp is neither convex nor concave. We conjecture that Φp is convex for 1 < p < 2, but our methods do not show this. ∗ Wo...

متن کامل

Convexity, Subadditivity and Generalized Jensen’s Inequality

In this paper we extend some theorems published lately on the relationship between convexity/concavity, and subadditivity/superadditivity. We also generalize inequalities of compound functions that refine Minkowski inequality.

متن کامل

Counterexamples for the Convexity of Certain Matricial Inequalities

In [CL99] Carlen and Lieb considered Minkowski type inequalities in the context of operators on a Hilbert space. More precisely, they considered the homogenous expression fpq(x1, ..., xn) = ( tr ( ( n ∑ k=1 x q k) p/q ))1/p defined for positive matrices. The concavity for q = 1 and p < 1 yields strong subadditivity for quantum entropy. We discuss the convexity of fpq and show that, contrary to ...

متن کامل

A Unified Treatment of Convexity of Relative Entropy and Related Trace Functions, with Conditions for Equality

We introduce a generalization of relative entropy derived from the WignerYanase-Dyson entropy and give a simple, self-contained proof that it is convex. Moreover, special cases yield the joint convexity of relative entropy, and for TrK∗ApKB1−p Lieb’s joint concavity in (A,B) for 0 < p < 1 and Ando’s joint convexity for 1 < p ≤ 2. This approach allows us to obtain conditions for equality in thes...

متن کامل

Monotonicity of quantum relative entropy and recoverability

The relative entropy is a principal measure of distinguishability in quantum information theory, with its most important property being that it is non-increasing under noisy quantum operations. Here, we establish a remainder term for this inequality that quantifies how well one can recover from a loss of information by employing a rotated Petz recovery map. The main approach for proving this re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999